summaryrefslogtreecommitdiff
path: root/include/linux/bpf_verifier.h
AgeCommit message (Collapse)Author
2017-06-23bpf: possibly avoid extra masking for narrower load in verifierYonghong Song
Commit 31fd85816dbe ("bpf: permits narrower load from bpf program context fields") permits narrower load for certain ctx fields. The commit however will already generate a masking even if the prog-specific ctx conversion produces the result with narrower size. For example, for __sk_buff->protocol, the ctx conversion loads the data into register with 2-byte load. A narrower 2-byte load should not generate masking. For __sk_buff->vlan_present, the conversion function set the result as either 0 or 1, essentially a byte. The narrower 2-byte or 1-byte load should not generate masking. To avoid unnecessary masking, prog-specific *_is_valid_access now passes converted_op_size back to verifier, which indicates the valid data width after perceived future conversion. Based on this information, verifier is able to avoid unnecessary marking. Since we want more information back from prog-specific *_is_valid_access checking, all of them are packed into one data structure for more clarity. Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-14bpf: permits narrower load from bpf program context fieldsYonghong Song
Currently, verifier will reject a program if it contains an narrower load from the bpf context structure. For example, __u8 h = __sk_buff->hash, or __u16 p = __sk_buff->protocol __u32 sample_period = bpf_perf_event_data->sample_period which are narrower loads of 4-byte or 8-byte field. This patch solves the issue by: . Introduce a new parameter ctx_field_size to carry the field size of narrower load from prog type specific *__is_valid_access validator back to verifier. . The non-zero ctx_field_size for a memory access indicates (1). underlying prog type specific convert_ctx_accesses supporting non-whole-field access (2). the current insn is a narrower or whole field access. . In verifier, for such loads where load memory size is less than ctx_field_size, verifier transforms it to a full field load followed by proper masking. . Currently, __sk_buff and bpf_perf_event_data->sample_period are supporting narrowing loads. . Narrower stores are still not allowed as typical ctx stores are just normal stores. Because of this change, some tests in verifier will fail and these tests are removed. As a bonus, rename some out of bound __sk_buff->cb access to proper field name and remove two redundant "skb cb oob" tests. Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-11bpf: Add strict alignment flag for BPF_PROG_LOAD.David S. Miller
Add a new field, "prog_flags", and an initial flag value BPF_F_STRICT_ALIGNMENT. When set, the verifier will enforce strict pointer alignment regardless of the setting of CONFIG_EFFICIENT_UNALIGNED_ACCESS. The verifier, in this mode, will also use a fixed value of "2" in place of NET_IP_ALIGN. This facilitates test cases that will exercise and validate this part of the verifier even when run on architectures where alignment doesn't matter. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-11bpf: Track alignment of register values in the verifier.David S. Miller
Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-03-16bpf: add helper inlining infra and optimize map_array lookupAlexei Starovoitov
Optimize bpf_call -> bpf_map_lookup_elem() -> array_map_lookup_elem() into a sequence of bpf instructions. When JIT is on the sequence of bpf instructions is the sequence of native cpu instructions with significantly faster performance than indirect call and two function's prologue/epilogue. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-08bpf: fix state equivalenceAlexei Starovoitov
Commmits 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") and 484611357c19 ("bpf: allow access into map value arrays") by themselves are correct, but in combination they make state equivalence ignore 'id' field of the register state which can lead to accepting invalid program. Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-22Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
All conflicts were simple overlapping changes except perhaps for the Thunder driver. That driver has a change_mtu method explicitly for sending a message to the hardware. If that fails it returns an error. Normally a driver doesn't need an ndo_change_mtu method becuase those are usually just range changes, which are now handled generically. But since this extra operation is needed in the Thunder driver, it has to stay. However, if the message send fails we have to restore the original MTU before the change because the entire call chain expects that if an error is thrown by ndo_change_mtu then the MTU did not change. Therefore code is added to nicvf_change_mtu to remember the original MTU, and to restore it upon nicvf_update_hw_max_frs() failue. Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-16bpf: fix range arithmetic for bpf map accessJosef Bacik
I made some invalid assumptions with BPF_AND and BPF_MOD that could result in invalid accesses to bpf map entries. Fix this up by doing a few things 1) Kill BPF_MOD support. This doesn't actually get used by the compiler in real life and just adds extra complexity. 2) Fix the logic for BPF_AND, don't allow AND of negative numbers and set the minimum value to 0 for positive AND's. 3) Don't do operations on the ranges if they are set to the limits, as they are by definition undefined, and allowing arithmetic operations on those values could make them appear valid when they really aren't. This fixes the testcase provided by Jann as well as a few other theoretical problems. Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-19bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registersThomas Graf
A BPF program is required to check the return register of a map_elem_lookup() call before accessing memory. The verifier keeps track of this by converting the type of the result register from PTR_TO_MAP_VALUE_OR_NULL to PTR_TO_MAP_VALUE after a conditional jump ensures safety. This check is currently exclusively performed for the result register 0. In the event the compiler reorders instructions, BPF_MOV64_REG instructions may be moved before the conditional jump which causes them to keep their type PTR_TO_MAP_VALUE_OR_NULL to which the verifier objects when the register is accessed: 0: (b7) r1 = 10 1: (7b) *(u64 *)(r10 -8) = r1 2: (bf) r2 = r10 3: (07) r2 += -8 4: (18) r1 = 0x59c00000 6: (85) call 1 7: (bf) r4 = r0 8: (15) if r0 == 0x0 goto pc+1 R0=map_value(ks=8,vs=8) R4=map_value_or_null(ks=8,vs=8) R10=fp 9: (7a) *(u64 *)(r4 +0) = 0 R4 invalid mem access 'map_value_or_null' This commit extends the verifier to keep track of all identical PTR_TO_MAP_VALUE_OR_NULL registers after a map_elem_lookup() by assigning them an ID and then marking them all when the conditional jump is observed. Signed-off-by: Thomas Graf <tgraf@suug.ch> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-29bpf: allow access into map value arraysJosef Bacik
Suppose you have a map array value that is something like this struct foo { unsigned iter; int array[SOME_CONSTANT]; }; You can easily insert this into an array, but you cannot modify the contents of foo->array[] after the fact. This is because we have no way to verify we won't go off the end of the array at verification time. This patch provides a start for this work. We accomplish this by keeping track of a minimum and maximum value a register could be while we're checking the code. Then at the time we try to do an access into a MAP_VALUE we verify that the maximum offset into that region is a valid access into that memory region. So in practice, code such as this unsigned index = 0; if (foo->iter >= SOME_CONSTANT) foo->iter = index; else index = foo->iter++; foo->array[index] = bar; would be allowed, as we can verify that index will always be between 0 and SOME_CONSTANT-1. If you wish to use signed values you'll have to have an extra check to make sure the index isn't less than 0, or do something like index %= SOME_CONSTANT. Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21bpf: enable non-core use of the verfierJakub Kicinski
Advanced JIT compilers and translators may want to use eBPF verifier as a base for parsers or to perform custom checks and validations. Add ability for external users to invoke the verifier and provide callbacks to be invoked for every intruction checked. For now only add most basic callback for per-instruction pre-interpretation checks is added. More advanced users may also like to have per-instruction post callback and state comparison callback. Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21bpf: expose internal verfier structuresJakub Kicinski
Move verifier's internal structures to a header file and prefix their names with bpf_ to avoid potential namespace conflicts. Those structures will soon be used by external analyzers. Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>