Age | Commit message (Collapse) | Author |
|
This adds support to the kernel proper for booting via UEFI. It shares
most of the code with arm64, so this patch mostly just wires it up for
use with ARM.
Note that this does not include the EFI stub, it is added in a subsequent
patch.
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
|
|
This splits off the early EFI init and runtime code that
- discovers the EFI params and the memory map from the FDT, and installs
the memblocks and config tables.
- prepares and installs the EFI page tables so that UEFI Runtime Services
can be invoked at the virtual address installed by the stub.
This will allow it to be reused for 32-bit ARM.
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch
merged from tip/irq/for-arm to allow the arm64-specific part to be
upstreamed via the arm64 tree
- CPU feature detection reworked to cope with heterogeneous systems
where CPUs may not have exactly the same features. The features
reported by the kernel via internal data structures or ELF_HWCAP are
delayed until all the CPUs are up (and before user space starts)
- Support for 16KB pages, with the additional bonus of a 36-bit VA
space, though the latter only depending on EXPERT
- Implement native {relaxed, acquire, release} atomics for arm64
- New ASID allocation algorithm which avoids IPI on roll-over, together
with TLB invalidation optimisations (using local vs global where
feasible)
- KASan support for arm64
- EFI_STUB clean-up and isolation for the kernel proper (required by
KASan)
- copy_{to,from,in}_user optimisations (sharing the memcpy template)
- perf: moving arm64 to the arm32/64 shared PMU framework
- L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware
- Support for the contiguous PTE hint on kernel mapping (16 consecutive
entries may be able to use a single TLB entry)
- Generic CONFIG_HZ now used on arm64
- defconfig updates
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (91 commits)
arm64/efi: fix libstub build under CONFIG_MODVERSIONS
ARM64: Enable multi-core scheduler support by default
arm64/efi: move arm64 specific stub C code to libstub
arm64: page-align sections for DEBUG_RODATA
arm64: Fix build with CONFIG_ZONE_DMA=n
arm64: Fix compat register mappings
arm64: Increase the max granular size
arm64: remove bogus TASK_SIZE_64 check
arm64: make Timer Interrupt Frequency selectable
arm64/mm: use PAGE_ALIGNED instead of IS_ALIGNED
arm64: cachetype: fix definitions of ICACHEF_* flags
arm64: cpufeature: declare enable_cpu_capabilities as static
genirq: Make the cpuhotplug migration code less noisy
arm64: Constify hwcap name string arrays
arm64/kvm: Make use of the system wide safe values
arm64/debug: Make use of the system wide safe value
arm64: Move FP/ASIMD hwcap handling to common code
arm64/HWCAP: Use system wide safe values
arm64/capabilities: Make use of system wide safe value
arm64: Delay cpu feature capability checks
...
|
|
This patch adds arch specific code for kernel address sanitizer
(see Documentation/kasan.txt).
1/8 of kernel addresses reserved for shadow memory. There was no
big enough hole for this, so virtual addresses for shadow were
stolen from vmalloc area.
At early boot stage the whole shadow region populated with just
one physical page (kasan_zero_page). Later, this page reused
as readonly zero shadow for some memory that KASan currently
don't track (vmalloc).
After mapping the physical memory, pages for shadow memory are
allocated and mapped.
Functions like memset/memmove/memcpy do a lot of memory accesses.
If bad pointer passed to one of these function it is important
to catch this. Compiler's instrumentation cannot do this since
these functions are written in assembly.
KASan replaces memory functions with manually instrumented variants.
Original functions declared as weak symbols so strong definitions
in mm/kasan/kasan.c could replace them. Original functions have aliases
with '__' prefix in name, so we could call non-instrumented variant
if needed.
Some files built without kasan instrumentation (e.g. mm/slub.c).
Original mem* function replaced (via #define) with prefixed variants
to disable memory access checks for such files.
Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This patch introduces new boot option named "efi_fake_mem".
By specifying this parameter, you can add arbitrary attribute
to specific memory range.
This is useful for debugging of Address Range Mirroring feature.
For example, if "efi_fake_mem=2G@4G:0x10000,2G@0x10a0000000:0x10000"
is specified, the original (firmware provided) EFI memmap will be
updated so that the specified memory regions have
EFI_MEMORY_MORE_RELIABLE attribute (0x10000):
<original>
efi: mem36: [Conventional Memory| | | | | | |WB|WT|WC|UC] range=[0x0000000100000000-0x00000020a0000000) (129536MB)
<updated>
efi: mem36: [Conventional Memory| |MR| | | | |WB|WT|WC|UC] range=[0x0000000100000000-0x0000000180000000) (2048MB)
efi: mem37: [Conventional Memory| | | | | | |WB|WT|WC|UC] range=[0x0000000180000000-0x00000010a0000000) (61952MB)
efi: mem38: [Conventional Memory| |MR| | | | |WB|WT|WC|UC] range=[0x00000010a0000000-0x0000001120000000) (2048MB)
efi: mem39: [Conventional Memory| | | | | | |WB|WT|WC|UC] range=[0x0000001120000000-0x00000020a0000000) (63488MB)
And you will find that the following message is output:
efi: Memory: 4096M/131455M mirrored memory
Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
So, I'm told this problem exists in the world:
> Subject: Build error in -next due to 'efi: Add esrt support'
>
> Building ia64:defconfig ... failed
> --------------
> Error log:
>
> drivers/firmware/efi/esrt.c:28:31: fatal error: asm/early_ioremap.h: No such file or directory
>
I'm not really sure how it's okay that we have things in asm-generic on
some platforms but not others - is having it the same everywhere not the
whole point of asm-generic?
That said, ia64 doesn't have early_ioremap.h . So instead, since it's
difficult to imagine new IA64 machines with UEFI 2.5, just don't build
this code there.
To me this looks like a workaround - doing something like:
generic-y += early_ioremap.h
in arch/ia64/include/asm/Kbuild would appear to be more correct, but
ia64 has its own early_memremap() decl in arch/ia64/include/asm/io.h ,
and it's a macro. So adding the above /and/ requiring that asm/io.h be
included /after/ asm/early_ioremap.h in all cases would fix it, but
that's pretty ugly as well. Since I'm not going to spend the rest of my
life rectifying ia64 headers vs "generic" headers that aren't generic,
it's much simpler to just not build there.
Note that I've only actually tried to build this patch on x86_64, but
esrt.o still gets built there, and that would seem to demonstrate that
the conditional building is working correctly at all the places the code
built before. I no longer have any ia64 machines handy to test that the
exclusion actually works there.
Signed-off-by: Peter Jones <pjones@redhat.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
(Compile-)Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Add sysfs files for the EFI System Resource Table (ESRT) under
/sys/firmware/efi/esrt and for each EFI System Resource Entry under
entries/ as a subdir.
The EFI System Resource Table (ESRT) provides a read-only catalog of
system components for which the system accepts firmware upgrades via
UEFI's "Capsule Update" feature. This module allows userland utilities
to evaluate what firmware updates can be applied to this system, and
potentially arrange for those updates to occur.
The ESRT is described as part of the UEFI specification, in version 2.5
which should be available from http://uefi.org/specifications in early
2015. If you're a member of the UEFI Forum, information about its
addition to the standard is available as UEFI Mantis 1090.
For some hardware platforms, additional restrictions may be found at
http://msdn.microsoft.com/en-us/library/windows/hardware/jj128256.aspx ,
and additional documentation may be found at
http://download.microsoft.com/download/5/F/5/5F5D16CD-2530-4289-8019-94C6A20BED3C/windows-uefi-firmware-update-platform.docx
.
Signed-off-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
This reverts commit 84be880560fb, which itself reverted my original
attempt to move x86 from #include'ing .c files from across the tree
to using the EFI stub built as a static library.
The issue that affected the original approach was that splitting
the implementation into several .o files resulted in the variable
'efi_early' becoming a global with external linkage, which under
-fPIC implies that references to it must go through the GOT. However,
dealing with this additional GOT entry turned out to be troublesome
on some EFI implementations. (GCC's visibility=hidden attribute is
supposed to lift this requirement, but it turned out not to work on
the 32-bit build.)
Instead, use a pure getter function to get a reference to efi_early.
This approach results in no additional GOT entries being generated,
so there is no need for any changes in the early GOT handling.
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
This reverts commit f23cf8bd5c1f ("efi/x86: efistub: Move shared
dependencies to <asm/efi.h>") as well as the x86 parts of commit
f4f75ad5741f ("efi: efistub: Convert into static library").
The road leading to these two reverts is long and winding.
The above two commits were merged during the v3.17 merge window and
turned the common EFI boot stub code into a static library. This
necessitated making some symbols global in the x86 boot stub which
introduced new entries into the early boot GOT.
The problem was that we weren't fixing up the newly created GOT entries
before invoking the EFI boot stub, which sometimes resulted in hangs or
resets. This failure was reported by Maarten on his Macbook pro.
The proposed fix was commit 9cb0e394234d ("x86/efi: Fixup GOT in all
boot code paths"). However, that caused issues for Linus when booting
his Sony Vaio Pro 11. It was subsequently reverted in commit
f3670394c29f.
So that leaves us back with Maarten's Macbook pro not booting.
At this stage in the release cycle the least risky option is to revert
the x86 EFI boot stub to the pre-merge window code structure where we
explicitly #include efi-stub-helper.c instead of linking with the static
library. The arm64 code remains unaffected.
We can take another swing at the x86 parts for v3.18.
Conflicts:
arch/x86/include/asm/efi.h
Tested-by: Josh Boyer <jwboyer@fedoraproject.org>
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org> [arm64]
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>,
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Implement efi_reboot(), which is really just a wrapper around the
EfiResetSystem() EFI runtime service, but it does at least allow us to
funnel all callers through a single location.
It also simplifies the callsites since users no longer need to check to
see whether EFI_RUNTIME_SERVICES are enabled.
Cc: Tony Luck <tony.luck@intel.com>
Tested-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
This patch changes both x86 and arm64 efistub implementations
from #including shared .c files under drivers/firmware/efi to
building shared code as a static library.
The x86 code uses a stub built into the boot executable which
uncompresses the kernel at boot time. In this case, the library is
linked into the decompressor.
In the arm64 case, the stub is part of the kernel proper so the library
is linked into the kernel proper as well.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
In order for other archs (such as arm64) to be able to reuse the virtual
mode function call wrappers, move them to drivers/firmware/efi/runtime-wrappers.c.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Conflicts:
arch/x86/platform/efi/efi.c
drivers/firmware/efi/Kconfig
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
kexec kernel will need exactly same mapping for EFI runtime memory
ranges. Thus here export the runtime ranges mapping to sysfs,
kexec-tools will assemble them and pass to 2nd kernel via setup_data.
Introducing a new directory /sys/firmware/efi/runtime-map just like
/sys/firmware/memmap. Containing below attribute in each file of that
directory:
attribute num_pages phys_addr type virt_addr
Signed-off-by: Dave Young <dyoung@redhat.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Commit 7ea6c6c1 ("Move cper.c from drivers/acpi/apei to
drivers/firmware/efi") results in CONFIG_EFI being enabled even
when the user doesn't want this. Since ACPI APEI used to build
fine without UEFI (and as far as I know also has no functional
depency on it), at least in that case using a reverse dependency
is wrong (and a straight one isn't needed).
Whether the same is true for ACPI_EXTLOG I don't know - if there
is a functional dependency, it should depend on EFI rather than
selecting it. It certainly has (currently) no build dependency.
Adjust Kconfig and build logic so that the bad dependency gets
avoided.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/52AF1EBC020000780010DBF9@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
cper.c contains code to decode and print "Common Platform Error Records".
Originally added under drivers/acpi/apei because the only user was in that
same directory - but now we have another consumer, and we shouldn't have
to force CONFIG_ACPI_APEI get access to this code.
Since CPER is defined in the UEFI specification - the logical home for
this code is under drivers/firmware/efi/
Acked-by: Matt Fleming <matt.fleming@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
This registers /sys/firmware/efi/{,systab,efivars/} whenever EFI is enabled
and the system is booted with EFI.
This allows
*) userspace to check for the existence of /sys/firmware/efi as a way
to determine whether or it is running on an EFI system.
*) 'mount -t efivarfs none /sys/firmware/efi/efivars' without manually
loading any modules.
[ Also, move the efivar API into vars.c and unconditionally compile it.
This allows us to move efivars.c, which now only contains the sysfs
variable code, into the firmware/efi directory. Note that the efivars.c
filename is kept to maintain backwards compatability with the old
efivars.ko module. With this patch it is now possible for efivarfs
to be built without CONFIG_EFI_VARS - Matt ]
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Mike Waychison <mikew@google.com>
Cc: Kay Sievers <kay@vrfy.org>
Cc: Jeremy Kerr <jk@ozlabs.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Chun-Yi Lee <jlee@suse.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Tobias Powalowski <tpowa@archlinux.org>
Signed-off-by: Tom Gundersen <teg@jklm.no>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
efivars.c has grown far too large and needs to be divided up. Create a
new directory and move the persistence storage code to efi-pstore.c now
that it uses the new efivar API. This helps us to greatly reduce the
size of efivars.c and paves the way for moving other code out of
efivars.c.
Note that because CONFIG_EFI_VARS can be built as a module efi-pstore
must also include support for building as a module.
Reviewed-by: Tom Gundersen <teg@jklm.no>
Tested-by: Tom Gundersen <teg@jklm.no>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Anton Vorontsov <cbouatmailru@gmail.com>
Cc: Colin Cross <ccross@android.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|