summaryrefslogtreecommitdiff
path: root/drivers/acpi/apei/apei-internal.h
AgeCommit message (Collapse)Author
2013-12-07ACPI / i915: Fix incorrect <acpi/acpi.h> inclusions via <linux/acpi_io.h>Lv Zheng
To avoid build problems and breaking dependencies between ACPI header files, <acpi/acpi.h> should not be included directly by code outside of the ACPI core subsystem. However, that is possible if <linux/acpi_io.h> is included, because that file contains a direct inclusion of <acpi/acpi.h>. For this reason, remove the direct <acpi/acpi.h> inclusion from <linux/acpi_io.h>, move that file from include/linux/ to include/acpi/ and make <linux/acpi.h> include it for CONFIG_ACPI set along with the other ACPI header files. Accordingly, Remove the inclusions of <linux/acpi_io.h> from everywhere. Of course, that causes the contents of the new <acpi/acpi_io.h> file to be available for CONFIG_ACPI set only, so intel_opregion.o that depends on it should also depend on CONFIG_ACPI (and it really should not be compiled for CONFIG_ACPI unset anyway). References: https://01.org/linuxgraphics/sites/default/files/documentation/acpi_igd_opregion_spec.pdf Cc: Matthew Garrett <mjg59@srcf.ucam.org> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [rjw: Subject and changelog] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-21ACPI, CPER: Update cper infoChen, Gong
We have a lot of confusing names of functions and data structures in amongs the the error reporting code. In particular the "apei" prefix has been applied to many objects that are not part of APEI. Since we will be using these routines for extended error log reporting it will be clearer if we fix up the names first. Signed-off-by: Chen, Gong <gong.chen@linux.intel.com> Acked-by: Borislav Petkov <bp@suse.de> Reviewed-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2012-06-12ACPI, APEI, Avoid too much error reporting in runtimeHuang Ying
This patch fixed the following bug. https://bugzilla.kernel.org/show_bug.cgi?id=43282 This is caused by a firmware bug checking (checking generic address register provided by firmware) in runtime. The checking should be done in address mapping time instead of runtime to avoid too much error reporting in runtime. Reported-by: Pawel Sikora <pluto@agmk.net> Signed-off-by: Huang Ying <ying.huang@intel.com> Tested-by: Jean Delvare <khali@linux-fr.org> Cc: stable@vger.kernel.org Signed-off-by: Len Brown <len.brown@intel.com>
2012-01-17ACPI APEI: Convert atomicio routinesMyron Stowe
APEI needs memory access in interrupt context. The obvious choice is acpi_read(), but originally it couldn't be used in interrupt context because it makes temporary mappings with ioremap(). Therefore, we added drivers/acpi/atomicio.c, which provides: acpi_pre_map_gar() -- ioremap in process context acpi_atomic_read() -- memory access in interrupt context acpi_post_unmap_gar() -- iounmap Later we added acpi_os_map_generic_address() (2971852) and enhanced acpi_read() so it works in interrupt context as long as the address has been previously mapped (620242a). Now this sequence: acpi_os_map_generic_address() -- ioremap in process context acpi_read()/apei_read() -- now OK in interrupt context acpi_os_unmap_generic_address() is equivalent to what atomicio.c provides. This patch introduces apei_read() and apei_write(), which currently are functional equivalents of acpi_read() and acpi_write(). This is mainly proactive, to prevent APEI breakages if acpi_read() and acpi_write() are ever augmented to support the 'bit_offset' field of GAS, as APEI's __apei_exec_write_register() precludes splitting up functionality related to 'bit_offset' and APEI's 'mask' (see its APEI_EXEC_PRESERVE_REGISTER block). With apei_read() and apei_write() in place, usages of atomicio routines are converted to apei_read()/apei_write() and existing calls within osl.c and the CA, based on the re-factoring that was done in an earlier patch series - http://marc.info/?l=linux-acpi&m=128769263327206&w=2: acpi_pre_map_gar() --> acpi_os_map_generic_address() acpi_post_unmap_gar() --> acpi_os_unmap_generic_address() acpi_atomic_read() --> apei_read() acpi_atomic_write() --> apei_write() Note that acpi_read() and acpi_write() currently use 'bit_width' for accessing GARs which seems incorrect. 'bit_width' is the size of the register, while 'access_width' is the size of the access the processor must generate on the bus. The 'access_width' may be larger, for example, if the hardware only supports 32-bit or 64-bit reads. I wanted to minimize any possible impacts with this patch series so I did *not* change this behavior. Signed-off-by: Myron Stowe <myron.stowe@redhat.com> Signed-off-by: Len Brown <len.brown@intel.com>
2012-01-17ACPI, APEI, EINJ, Fix resource conflict on some machineHuang Ying
Some APEI firmware implementation will access injected address specified in param1 to trigger the error when injecting memory error. This will cause resource conflict with RAM. On one of our testing machine, if injecting at memory address 0x10000000, the following error will be reported in dmesg: APEI: Can not request iomem region <0000000010000000-0000000010000008> for GARs. This patch removes the injecting memory address range from trigger table resources to avoid conflict. Signed-off-by: Huang Ying <ying.huang@intel.com> Tested-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2011-07-13ACPI, APEI, Add WHEA _OSC supportHuang Ying
APEI firmware first mode must be turned on explicitly on some machines, otherwise there may be no GHES hardware error record for hardware error notification. APEI bit in generic _OSC call can be used to do that, but on some machine, a special WHEA _OSC call must be used. This patch adds the support to that WHEA _OSC call. Signed-off-by: Huang Ying <ying.huang@intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Matthew Garrett <mjg@redhat.com> Signed-off-by: Len Brown <len.brown@intel.com>
2011-07-13ACPI, APEI, Add apei_exec_run_optionalHuang Ying
Some actions in APEI ERST and EINJ tables are optional, for example, ACPI_EINJ_BEGIN_OPERATION action is used to do some preparation for error injection, and firmware may choose to do nothing here. While some other actions are mandatory, for example, firmware must provide ACPI_EINJ_GET_ERROR_TYPE implementation. Original implementation treats all actions as optional (that is, can have no instructions), that may cause issue if firmware does not provide some mandatory actions. To fix this, this patch adds apei_exec_run_optional, which should be used for optional actions. The original apei_exec_run should be used for mandatory actions. Cc: Thomas Renninger <trenn@novell.com> Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-12-13ACPI, APEI, Add APEI generic error status printing supportHuang Ying
In APEI, Hardware error information reported by firmware to Linux kernel is in the data structure of APEI generic error status (struct acpi_hes_generic_status). While now printk is used by Linux kernel to report hardware error information to user space. So, this patch adds printing support for the data structure, so that the corresponding hardware error information can be reported to user space via printk. PCIe AER information printing is not implemented yet. Will refactor the original PCIe AER information printing code to avoid code duplicating. The output format is as follow: <error record> := APEI generic hardware error status severity: <integer>, <severity string> section: <integer>, severity: <integer>, <severity string> flags: <integer> <section flags strings> fru_id: <uuid string> fru_text: <string> section_type: <section type string> <section data> <severity string>* := recoverable | fatal | corrected | info <section flags strings># := [primary][, containment warning][, reset][, threshold exceeded]\ [, resource not accessible][, latent error] <section type string> := generic processor error | memory error | \ PCIe error | unknown, <uuid string> <section data> := <generic processor section data> | <memory section data> | \ <pcie section data> | <null> <generic processor section data> := [processor_type: <integer>, <proc type string>] [processor_isa: <integer>, <proc isa string>] [error_type: <integer> <proc error type strings>] [operation: <integer>, <proc operation string>] [flags: <integer> <proc flags strings>] [level: <integer>] [version_info: <integer>] [processor_id: <integer>] [target_address: <integer>] [requestor_id: <integer>] [responder_id: <integer>] [IP: <integer>] <proc type string>* := IA32/X64 | IA64 <proc isa string>* := IA32 | IA64 | X64 <processor error type strings># := [cache error][, TLB error][, bus error][, micro-architectural error] <proc operation string>* := unknown or generic | data read | data write | \ instruction execution <proc flags strings># := [restartable][, precise IP][, overflow][, corrected] <memory section data> := [error_status: <integer>] [physical_address: <integer>] [physical_address_mask: <integer>] [node: <integer>] [card: <integer>] [module: <integer>] [bank: <integer>] [device: <integer>] [row: <integer>] [column: <integer>] [bit_position: <integer>] [requestor_id: <integer>] [responder_id: <integer>] [target_id: <integer>] [error_type: <integer>, <mem error type string>] <mem error type string>* := unknown | no error | single-bit ECC | multi-bit ECC | \ single-symbol chipkill ECC | multi-symbol chipkill ECC | master abort | \ target abort | parity error | watchdog timeout | invalid address | \ mirror Broken | memory sparing | scrub corrected error | \ scrub uncorrected error <pcie section data> := [port_type: <integer>, <pcie port type string>] [version: <integer>.<integer>] [command: <integer>, status: <integer>] [device_id: <integer>:<integer>:<integer>.<integer> slot: <integer> secondary_bus: <integer> vendor_id: <integer>, device_id: <integer> class_code: <integer>] [serial number: <integer>, <integer>] [bridge: secondary_status: <integer>, control: <integer>] <pcie port type string>* := PCIe end point | legacy PCI end point | \ unknown | unknown | root port | upstream switch port | \ downstream switch port | PCIe to PCI/PCI-X bridge | \ PCI/PCI-X to PCIe bridge | root complex integrated endpoint device | \ root complex event collector Where, [] designate corresponding content is optional All <field string> description with * has the following format: field: <integer>, <field string> Where value of <integer> should be the position of "string" in <field string> description. Otherwise, <field string> will be "unknown". All <field strings> description with # has the following format: field: <integer> <field strings> Where each string in <fields strings> corresponding to one set bit of <integer>. The bit position is the position of "string" in <field strings> description. For more detailed explanation of every field, please refer to UEFI specification version 2.3 or later, section Appendix N: Common Platform Error Record. Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-19ACPI, APEI, UEFI Common Platform Error Record (CPER) headerHuang Ying
CPER stands for Common Platform Error Record, it is the hardware error record format used to describe platform hardware error by various APEI tables, such as ERST, BERT and HEST etc. For more information about CPER, please refer to Appendix N of UEFI Specification version 2.3. This patch mainly includes the data structure difinition header file used by other files. Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-19ACPI, APEI, APEI supporting infrastructureHuang Ying
APEI stands for ACPI Platform Error Interface, which allows to report errors (for example from the chipset) to the operating system. This improves NMI handling especially. In addition it supports error serialization and error injection. For more information about APEI, please refer to ACPI Specification version 4.0, chapter 17. This patch provides some common functions used by more than one APEI tables, mainly framework of interpreter for EINJ and ERST. A machine readable language is defined for EINJ and ERST for OS to execute, and so to drive the firmware to fulfill the corresponding functions. The machine language for EINJ and ERST is compatible, so a common framework is defined for them. Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Len Brown <len.brown@intel.com>