summaryrefslogtreecommitdiff
path: root/crypto/asymmetric_keys
AgeCommit message (Collapse)Author
2014-07-08PKCS#7: Find the right key in the PKCS#7 key list and verify the signatureDavid Howells
Find the appropriate key in the PKCS#7 key list and verify the signature with it. There may be several keys in there forming a chain. Any link in that chain or the root of that chain may be in our keyrings. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-08PKCS#7: Digest the data in a signed-data messageDavid Howells
Digest the data in a PKCS#7 signed-data message and attach to the public_key_signature struct contained in the pkcs7_message struct. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-08PKCS#7: Implement a parser [RFC 2315]David Howells
Implement a parser for a PKCS#7 signed-data message as described in part of RFC 2315. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-02X.509: Export certificate parse and free functionsDavid Howells
Export certificate parse and free functions for use by modules. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2014-07-01X.509: Add bits needed for PKCS#7David Howells
PKCS#7 validation requires access to the serial number and the raw names in an X.509 certificate. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-11-23Revert "KEYS: verify a certificate is signed by a 'trusted' key"Linus Torvalds
This reverts commit 09fbc47373826d67531380662b516de2da120545, which caused the following build errors: crypto/asymmetric_keys/x509_public_key.c: In function ‘x509_key_preparse’: crypto/asymmetric_keys/x509_public_key.c:237:35: error: ‘system_trusted_keyring’ undeclared (first use in this function) ret = x509_validate_trust(cert, system_trusted_keyring); ^ crypto/asymmetric_keys/x509_public_key.c:237:35: note: each undeclared identifier is reported only once for each function it appears in reported by Jim Davis. Mimi says: "I made the classic mistake of requesting this patch to be upstreamed at the last second, rather than waiting until the next open window. At this point, the best course would probably be to revert the two commits and fix them for the next open window" Reported-by: Jim Davis <jim.epost@gmail.com> Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6Linus Torvalds
Pull crypto update from Herbert Xu: - Made x86 ablk_helper generic for ARM - Phase out chainiv in favour of eseqiv (affects IPsec) - Fixed aes-cbc IV corruption on s390 - Added constant-time crypto_memneq which replaces memcmp - Fixed aes-ctr in omap-aes - Added OMAP3 ROM RNG support - Add PRNG support for MSM SoC's - Add and use Job Ring API in caam - Misc fixes [ NOTE! This pull request was sent within the merge window, but Herbert has some questionable email sending setup that makes him public enemy #1 as far as gmail is concerned. So most of his emails seem to be trapped by gmail as spam, resulting in me not seeing them. - Linus ] * git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (49 commits) crypto: s390 - Fix aes-cbc IV corruption crypto: omap-aes - Fix CTR mode counter length crypto: omap-sham - Add missing modalias padata: make the sequence counter an atomic_t crypto: caam - Modify the interface layers to use JR API's crypto: caam - Add API's to allocate/free Job Rings crypto: caam - Add Platform driver for Job Ring hwrng: msm - Add PRNG support for MSM SoC's ARM: DT: msm: Add Qualcomm's PRNG driver binding document crypto: skcipher - Use eseqiv even on UP machines crypto: talitos - Simplify key parsing crypto: picoxcell - Simplify and harden key parsing crypto: ixp4xx - Simplify and harden key parsing crypto: authencesn - Simplify key parsing crypto: authenc - Export key parsing helper function crypto: mv_cesa: remove deprecated IRQF_DISABLED hwrng: OMAP3 ROM Random Number Generator support crypto: sha256_ssse3 - also test for BMI2 crypto: mv_cesa - Remove redundant of_match_ptr crypto: sahara - Remove redundant of_match_ptr ...
2013-11-01KEYS: The RSA public key algorithm needs to select MPILIBDavid Howells
The RSA public key algorithm needs to select MPILIB directly in Kconfig as the 'select' directive is not recursive and is thus MPILIB is not enabled by selecting MPILIB_EXTRA. Without this, the following errors can occur: crypto/built-in.o: In function `RSA_verify_signature': rsa.c:(.text+0x1d347): undefined reference to `mpi_get_nbits' rsa.c:(.text+0x1d354): undefined reference to `mpi_get_nbits' rsa.c:(.text+0x1d36e): undefined reference to `mpi_cmp_ui' rsa.c:(.text+0x1d382): undefined reference to `mpi_cmp' rsa.c:(.text+0x1d391): undefined reference to `mpi_alloc' rsa.c:(.text+0x1d3b0): undefined reference to `mpi_powm' rsa.c:(.text+0x1d3c3): undefined reference to `mpi_free' rsa.c:(.text+0x1d3d8): undefined reference to `mpi_get_buffer' rsa.c:(.text+0x1d4d4): undefined reference to `mpi_free' rsa.c:(.text+0x1d503): undefined reference to `mpi_get_nbits' Reported-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Randy Dunlap <rdunlap@infradead.org>
2013-10-25ima: provide support for arbitrary hash algorithmsDmitry Kasatkin
In preparation of supporting more hash algorithms with larger hash sizes needed for signature verification, this patch replaces the 20 byte sized digest, with a more flexible structure. The new structure includes the hash algorithm, digest size, and digest. Changelog: - recalculate filedata hash for the measurement list, if the signature hash digest size is greater than 20 bytes. - use generic HASH_ALGO_ - make ima_calc_file_hash static - scripts lindent and checkpatch fixes Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2013-10-25keys: change asymmetric keys to use common hash definitionsDmitry Kasatkin
This patch makes use of the newly defined common hash algorithm info, replacing, for example, PKEY_HASH with HASH_ALGO. Changelog: - Lindent fixes - Mimi CC: David Howells <dhowells@redhat.com> Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2013-10-07crypto: crypto_memneq - add equality testing of memory regions w/o timing leaksJames Yonan
When comparing MAC hashes, AEAD authentication tags, or other hash values in the context of authentication or integrity checking, it is important not to leak timing information to a potential attacker, i.e. when communication happens over a network. Bytewise memory comparisons (such as memcmp) are usually optimized so that they return a nonzero value as soon as a mismatch is found. E.g, on x86_64/i5 for 512 bytes this can be ~50 cyc for a full mismatch and up to ~850 cyc for a full match (cold). This early-return behavior can leak timing information as a side channel, allowing an attacker to iteratively guess the correct result. This patch adds a new method crypto_memneq ("memory not equal to each other") to the crypto API that compares memory areas of the same length in roughly "constant time" (cache misses could change the timing, but since they don't reveal information about the content of the strings being compared, they are effectively benign). Iow, best and worst case behaviour take the same amount of time to complete (in contrast to memcmp). Note that crypto_memneq (unlike memcmp) can only be used to test for equality or inequality, NOT for lexicographical order. This, however, is not an issue for its use-cases within the crypto API. We tried to locate all of the places in the crypto API where memcmp was being used for authentication or integrity checking, and convert them over to crypto_memneq. crypto_memneq is declared noinline, placed in its own source file, and compiled with optimizations that might increase code size disabled ("Os") because a smart compiler (or LTO) might notice that the return value is always compared against zero/nonzero, and might then reintroduce the same early-return optimization that we are trying to avoid. Using #pragma or __attribute__ optimization annotations of the code for disabling optimization was avoided as it seems to be considered broken or unmaintained for long time in GCC [1]. Therefore, we work around that by specifying the compile flag for memneq.o directly in the Makefile. We found that this seems to be most appropriate. As we use ("Os"), this patch also provides a loop-free "fast-path" for frequently used 16 byte digests. Similarly to kernel library string functions, leave an option for future even further optimized architecture specific assembler implementations. This was a joint work of James Yonan and Daniel Borkmann. Also thanks for feedback from Florian Weimer on this and earlier proposals [2]. [1] http://gcc.gnu.org/ml/gcc/2012-07/msg00211.html [2] https://lkml.org/lkml/2013/2/10/131 Signed-off-by: James Yonan <james@openvpn.net> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Florian Weimer <fw@deneb.enyo.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-09-25X.509: add module description and licenseKonstantin Khlebnikov
This patch fixes lack of license, otherwise x509_key_parser.ko taints kernel. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-25KEYS: verify a certificate is signed by a 'trusted' keyMimi Zohar
Only public keys, with certificates signed by an existing 'trusted' key on the system trusted keyring, should be added to a trusted keyring. This patch adds support for verifying a certificate's signature. This is derived from David Howells pkcs7_request_asymmetric_key() patch. Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-25KEYS: Set the asymmetric-key type default search methodDavid Howells
The keyring expansion patches introduces a new search method by which key_search() attempts to walk directly to the key that has exactly the same description as the requested one. However, this causes inexact matching of asymmetric keys to fail. The solution to this is to select iterative rather than direct search as the default search type for asymmetric keys. As an example, the kernel might have a key like this: Magrathea: Glacier signing key: 6a2a0f82bad7e396665f465e4e3e1f9bd24b1226 and: keyctl search <keyring-ID> asymmetric id:d24b1226 should find the key, despite that not being its exact description. Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-25X.509: Remove certificate date checksDavid Howells
Remove the certificate date checks that are performed when a certificate is parsed. There are two checks: a valid from and a valid to. The first check is causing a lot of problems with system clocks that don't keep good time and the second places an implicit expiry date upon the kernel when used for module signing, so do we really need them? Signed-off-by: David Howells <dhowells@redhat.com> cc: David Woodhouse <dwmw2@infradead.org> cc: Rusty Russell <rusty@rustcorp.com.au> cc: Josh Boyer <jwboyer@redhat.com> cc: Alexander Holler <holler@ahsoftware.de> cc: stable@vger.kernel.org
2013-09-25X.509: Handle certificates that lack an authorityKeyIdentifier fieldDavid Howells
Handle certificates that lack an authorityKeyIdentifier field by assuming they're self-signed and checking their signatures against themselves. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25X.509: Check the algorithm IDs obtained from parsing an X.509 certificateDavid Howells
Check that the algorithm IDs obtained from the ASN.1 parse by OID lookup corresponds to algorithms that are available to us. Reported-by: Kees Cook <keescook@chromium.org> Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-25X.509: Embed public_key_signature struct and create filler functionDavid Howells
Embed a public_key_signature struct in struct x509_certificate, eliminating now unnecessary fields, and split x509_check_signature() to create a filler function for it that attaches a digest of the signed data and an MPI that represents the signature data. x509_free_certificate() is then modified to deal with these. Whilst we're at it, export both x509_check_signature() and the new x509_get_sig_params(). Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25X.509: struct x509_certificate needs struct tm declaringDavid Howells
struct x509_certificate needs struct tm declaring by #inclusion of linux/time.h prior to its definition. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25KEYS: Split public_key_verify_signature() and make availableDavid Howells
Modify public_key_verify_signature() so that it now takes a public_key struct rather than a key struct and supply a wrapper that takes a key struct. The wrapper is then used by the asymmetric key subtype and the modified function is used by X.509 self-signature checking and can be used by other things also. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25KEYS: Store public key algo ID in public_key structDavid Howells
Store public key algo ID in public_key struct for reference purposes. This allows it to be removed from the x509_certificate struct and used to find a default in public_key_verify_signature(). Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25KEYS: Move the algorithm pointer array from x509 to public_key.cDavid Howells
Move the public-key algorithm pointer array from x509_public_key.c to public_key.c as it isn't X.509 specific. Note that to make this configure correctly, the public key part must be dependent on the RSA module rather than the other way round. This needs a further patch to make use of the crypto module loading stuff rather than using a fixed table. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25KEYS: Rename public key parameter name arraysDavid Howells
Rename the arrays of public key parameters (public key algorithm names, hash algorithm names and ID type names) so that the array name ends in "_name". Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-04-22X.509: Support parse long form of length octets in Authority Key IdentifierChun-Yi Lee
Per X.509 spec in 4.2.1.1 section, the structure of Authority Key Identifier Extension is: AuthorityKeyIdentifier ::= SEQUENCE { keyIdentifier [0] KeyIdentifier OPTIONAL, authorityCertIssuer [1] GeneralNames OPTIONAL, authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL } KeyIdentifier ::= OCTET STRING When a certificate also provides authorityCertIssuer and authorityCertSerialNumber then the length of AuthorityKeyIdentifier SEQUENCE is likely to long form format. e.g. The example certificate demos/tunala/A-server.pem in openssl source: X509v3 Authority Key Identifier: keyid:49:FB:45:72:12:C4:CC:E1:45:A1:D3:08:9E:95:C4:2C:6D:55:3F:17 DirName:/C=NZ/L=Wellington/O=Really Irresponsible Authorisation Authority (RIAA)/OU=Cert-stamping/CN=Jackov al-Trades/emailAddress=none@fake.domain serial:00 Current parsing rule of OID_authorityKeyIdentifier only take care the short form format, it causes load certificate to modsign_keyring fail: [ 12.061147] X.509: Extension: 47 [ 12.075121] MODSIGN: Problem loading in-kernel X.509 certificate (-74) So, this patch add the parsing rule for support long form format against Authority Key Identifier. v3: Changed the size check in "Short Form length" case, we allow v[3] smaller then (vlen - 4) because authorityCertIssuer and authorityCertSerialNumber are also possible attach in AuthorityKeyIdentifier sequence. v2: - Removed comma from author's name. - Moved 'Short Form length' comment inside the if-body. - Changed the type of sub to size_t. - Use ASN1_INDEFINITE_LENGTH rather than writing 0x80 and 127. - Moved the key_len's value assignment before alter v. - Fixed the typo of octets. - Add 2 to v before entering the loop for calculate the length. - Removed the comment of check vlen. Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Randy Dunlap <rdunlap@xenotime.net> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Chun-Yi Lee <jlee@suse.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-10X.509: Convert some printk calls to pr_develDavid Howells
Some debugging printk() calls should've been converted to pr_devel() calls. Do that now. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-10asymmetric keys: fix printk format warningRandy Dunlap
Fix printk format warning in x509_cert_parser.c: crypto/asymmetric_keys/x509_cert_parser.c: In function 'x509_note_OID': crypto/asymmetric_keys/x509_cert_parser.c:113:3: warning: format '%zu' expects type 'size_t', but argument 2 has type 'long unsigned int' Builds cleanly on i386 and x86_64. Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Cc: David Howells <dhowells@redhat.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: linux-crypto@vger.kernel.org Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-10MODSIGN: Fix 32-bit overflow in X.509 certificate validity date checkingDavid Howells
The current choice of lifetime for the autogenerated X.509 of 100 years, putting the validTo date in 2112, causes problems on 32-bit systems where a 32-bit time_t wraps in 2106. 64-bit x86_64 systems seem to be unaffected. This can result in something like: Loading module verification certificates X.509: Cert 6e03943da0f3b015ba6ed7f5e0cac4fe48680994 has expired MODSIGN: Problem loading in-kernel X.509 certificate (-127) Or: X.509: Cert 6e03943da0f3b015ba6ed7f5e0cac4fe48680994 is not yet valid MODSIGN: Problem loading in-kernel X.509 certificate (-129) Instead of turning the dates into time_t values and comparing, turn the system clock and the ASN.1 dates into tm structs and compare those piecemeal instead. Reported-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Josh Boyer <jwboyer@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08X.509: Add a crypto key parser for binary (DER) X.509 certificatesDavid Howells
Add a crypto key parser for binary (DER) encoded X.509 certificates. The certificate is parsed and, if possible, the signature is verified. An X.509 key can be added like this: # keyctl padd crypto bar @s </tmp/x509.cert 15768135 and displayed like this: # cat /proc/keys 00f09a47 I--Q--- 1 perm 39390000 0 0 asymmetri bar: X509.RSA e9fd6d08 [] Note that this only works with binary certificates. PEM encoded certificates are ignored by the parser. Note also that the X.509 key ID is not congruent with the PGP key ID, but for the moment, they will match. If a NULL or "" name is given to add_key(), then the parser will generate a key description from the CertificateSerialNumber and Name fields of the TBSCertificate: 00aefc4e I--Q--- 1 perm 39390000 0 0 asymmetri bfbc0cd76d050ea4:/C=GB/L=Cambridge/O=Red Hat/CN=kernel key: X509.RSA 0c688c7b [] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08RSA: Fix signature verification for shorter signaturesDavid Howells
gpg can produce a signature file where length of signature is less than the modulus size because the amount of space an MPI takes up is kept as low as possible by discarding leading zeros. This regularly happens for several modules during the build. Fix it by relaxing check in RSA verification code. Thanks to Tomas Mraz and Miloslav Trmac for help. Signed-off-by: Milan Broz <mbroz@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08RSA: Implement signature verification algorithm [PKCS#1 / RFC3447]David Howells
Implement RSA public key cryptography [PKCS#1 / RFC3447]. At this time, only the signature verification algorithm is supported. This uses the asymmetric public key subtype to hold its key data. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08KEYS: Provide signature verification with an asymmetric keyDavid Howells
Provide signature verification using an asymmetric-type key to indicate the public key to be used. The API is a single function that can be found in crypto/public_key.h: int verify_signature(const struct key *key, const struct public_key_signature *sig) The first argument is the appropriate key to be used and the second argument is the parsed signature data: struct public_key_signature { u8 *digest; u16 digest_size; enum pkey_hash_algo pkey_hash_algo : 8; union { MPI mpi[2]; struct { MPI s; /* m^d mod n */ } rsa; struct { MPI r; MPI s; } dsa; }; }; This should be filled in prior to calling the function. The hash algorithm should already have been called and the hash finalised and the output should be in a buffer pointed to by the 'digest' member. Any extra data to be added to the hash by the hash format (eg. PGP) should have been added by the caller prior to finalising the hash. It is assumed that the signature is made up of a number of MPI values. If an algorithm becomes available for which this is not the case, the above structure will have to change. It is also assumed that it will have been checked that the signature algorithm matches the key algorithm. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08KEYS: Asymmetric public-key algorithm crypto key subtypeDavid Howells
Add a subtype for supporting asymmetric public-key encryption algorithms such as DSA (FIPS-186) and RSA (PKCS#1 / RFC1337). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08KEYS: Asymmetric key pluggable data parsersDavid Howells
The instantiation data passed to the asymmetric key type are expected to be formatted in some way, and there are several possible standard ways to format the data. The two obvious standards are OpenPGP keys and X.509 certificates. The latter is especially useful when dealing with UEFI, and the former might be useful when dealing with, say, eCryptfs. Further, it might be desirable to provide formatted blobs that indicate hardware is to be accessed to retrieve the keys or that the keys live unretrievably in a hardware store, but that the keys can be used by means of the hardware. From userspace, the keys can be loaded using the keyctl command, for example, an X.509 binary certificate: keyctl padd asymmetric foo @s <dhowells.pem or a PGP key: keyctl padd asymmetric bar @s <dhowells.pub or a pointer into the contents of the TPM: keyctl add asymmetric zebra "TPM:04982390582905f8" @s Inside the kernel, pluggable parsers register themselves and then get to examine the payload data to see if they can handle it. If they can, they get to: (1) Propose a name for the key, to be used it the name is "" or NULL. (2) Specify the key subtype. (3) Provide the data for the subtype. The key type asks the parser to do its stuff before a key is allocated and thus before the name is set. If successful, the parser stores the suggested data into the key_preparsed_payload struct, which will be either used (if the key is successfully created and instantiated or updated) or discarded. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08KEYS: Implement asymmetric key typeDavid Howells
Create a key type that can be used to represent an asymmetric key type for use in appropriate cryptographic operations, such as encryption, decryption, signature generation and signature verification. The key type is "asymmetric" and can provide access to a variety of cryptographic algorithms. Possibly, this would be better as "public_key" - but that has the disadvantage that "public key" is an overloaded term. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>