summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/pmem.h
AgeCommit message (Collapse)Author
2016-03-28x86, pmem: use memcpy_mcsafe() for memcpy_from_pmem()Dan Williams
Update the definition of memcpy_from_pmem() to return 0 or a negative error code. Implement x86/arch_memcpy_from_pmem() with memcpy_mcsafe(). Cc: Borislav Petkov <bp@alien8.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-03-09libnvdimm, pmem: clear poison on writeDan Williams
If a write is directed at a known bad block perform the following: 1/ write the data 2/ send a clear poison command 3/ invalidate the poison out of the cache hierarchy Cc: <x86@kernel.org> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-01-22pmem: add wb_cache_pmem() to the PMEM APIRoss Zwisler
__arch_wb_cache_pmem() was already an internal implementation detail of the x86 PMEM API, but this functionality needs to be exported as part of the general PMEM API to handle the fsync/msync case for DAX mmaps. One thing worth noting is that we really do want this to be part of the PMEM API as opposed to a stand-alone function like clflush_cache_range() because of ordering restrictions. By having wb_cache_pmem() as part of the PMEM API we can leave it unordered, call it multiple times to write back large amounts of memory, and then order the multiple calls with a single wmb_pmem(). Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15pmem, dax: clean up clear_pmem()Dan Williams
To date, we have implemented two I/O usage models for persistent memory, PMEM (a persistent "ram disk") and DAX (mmap persistent memory into userspace). This series adds a third, DAX-GUP, that allows DAX mappings to be the target of direct-i/o. It allows userspace to coordinate DMA/RDMA from/to persistent memory. The implementation leverages the ZONE_DEVICE mm-zone that went into 4.3-rc1 (also discussed at kernel summit) to flag pages that are owned and dynamically mapped by a device driver. The pmem driver, after mapping a persistent memory range into the system memmap via devm_memremap_pages(), arranges for DAX to distinguish pfn-only versus page-backed pmem-pfns via flags in the new pfn_t type. The DAX code, upon seeing a PFN_DEV+PFN_MAP flagged pfn, flags the resulting pte(s) inserted into the process page tables with a new _PAGE_DEVMAP flag. Later, when get_user_pages() is walking ptes it keys off _PAGE_DEVMAP to pin the device hosting the page range active. Finally, get_page() and put_page() are modified to take references against the device driver established page mapping. Finally, this need for "struct page" for persistent memory requires memory capacity to store the memmap array. Given the memmap array for a large pool of persistent may exhaust available DRAM introduce a mechanism to allocate the memmap from persistent memory. The new "struct vmem_altmap *" parameter to devm_memremap_pages() enables arch_add_memory() to use reserved pmem capacity rather than the page allocator. This patch (of 25): Both __dax_pmd_fault, and clear_pmem() were taking special steps to clear memory a page at a time to take advantage of non-temporal clear_page() implementations. However, x86_64 does not use non-temporal instructions for clear_page(), and arch_clear_pmem() was always incurring the cost of __arch_wb_cache_pmem(). Clean up the assumption that doing clear_pmem() a page at a time is more performant. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: David Airlie <airlied@linux.ie> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Jens Axboe <axboe@fb.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-27x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WBDan Williams
Given that a write-back (WB) mapping plus non-temporal stores is expected to be the most efficient way to access PMEM, update the definition of ARCH_HAS_PMEM_API to imply arch support for WB-mapped-PMEM. This is needed as a pre-requisite for adding PMEM to the direct map and mapping it with struct page. The above clarification for X86_64 means that memcpy_to_pmem() is permitted to use the non-temporal arch_memcpy_to_pmem() rather than needlessly fall back to default_memcpy_to_pmem() when the pcommit instruction is not available. When arch_memcpy_to_pmem() is not guaranteed to flush writes out of cache, i.e. on older X86_32 implementations where non-temporal stores may just dirty cache, ARCH_HAS_PMEM_API is simply disabled. The default fall back for persistent memory handling remains. Namely, map it with the WT (write-through) cache-type and hope for the best. arch_has_pmem_api() is updated to only indicate whether the arch provides the proper helpers to meet the minimum "writes are visible outside the cache hierarchy after memcpy_to_pmem() + wmb_pmem()". Code that cares whether wmb_pmem() actually flushes writes to pmem must now call arch_has_wmb_pmem() directly. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> [hch: set ARCH_HAS_PMEM_API=n on x86_32] Reviewed-by: Christoph Hellwig <hch@lst.de> [toshi: x86_32 compile fixes] Signed-off-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-27nd_blk: change aperture mapping from WC to WBRoss Zwisler
This should result in a pretty sizeable performance gain for reads. For rough comparison I did some simple read testing using PMEM to compare reads of write combining (WC) mappings vs write-back (WB). This was done on a random lab machine. PMEM reads from a write combining mapping: # dd of=/dev/null if=/dev/pmem0 bs=4096 count=100000 100000+0 records in 100000+0 records out 409600000 bytes (410 MB) copied, 9.2855 s, 44.1 MB/s PMEM reads from a write-back mapping: # dd of=/dev/null if=/dev/pmem0 bs=4096 count=1000000 1000000+0 records in 1000000+0 records out 4096000000 bytes (4.1 GB) copied, 3.44034 s, 1.2 GB/s To be able to safely support a write-back aperture I needed to add support for the "read flush" _DSM flag, as outlined in the DSM spec: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf This flag tells the ND BLK driver that it needs to flush the cache lines associated with the aperture after the aperture is moved but before any new data is read. This ensures that any stale cache lines from the previous contents of the aperture will be discarded from the processor cache, and the new data will be read properly from the DIMM. We know that the cache lines are clean and will be discarded without any writeback because either a) the previous aperture operation was a read, and we never modified the contents of the aperture, or b) the previous aperture operation was a write and we must have written back the dirtied contents of the aperture to the DIMM before the I/O was completed. In order to add support for the "read flush" flag I needed to add a generic routine to invalidate cache lines, mmio_flush_range(). This is protected by the ARCH_HAS_MMIO_FLUSH Kconfig variable, and is currently only supported on x86. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-20pmem: add copy_from_iter_pmem() and clear_pmem()Ross Zwisler
Add support for two new PMEM APIs, copy_from_iter_pmem() and clear_pmem(). copy_from_iter_pmem() is used to copy data from an iterator into a PMEM buffer. clear_pmem() zeros a PMEM memory range. Both of these new APIs must be explicitly ordered using a wmb_pmem() function call and are implemented in such a way that the wmb_pmem() will make the stores to PMEM durable. Because both APIs are unordered they can be called as needed without introducing any unwanted memory barriers. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-20pmem, x86: clean up conditional pmem includesRoss Zwisler
Prior to this change x86_64 used the pmem defines in arch/x86/include/asm/pmem.h, and UM used the default ones at the top of include/linux/pmem.h. The inclusion or exclusion in linux/pmem.h was controlled by CONFIG_ARCH_HAS_PMEM_API, but the ones in asm/pmem.h were controlled by ARCH_HAS_NOCACHE_UACCESS. Instead, control them both with CONFIG_ARCH_HAS_PMEM_API so that it's clear that they are related and we don't run into the possibility where they are both included or excluded. Also remove a bunch of stale function prototypes meant for UM in asm/pmem.h - these just conflicted with the inline defaults in linux/pmem.h and gave compile errors. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-20pmem: remove layer when calling arch_has_wmb_pmem()Ross Zwisler
Prior to this change arch_has_wmb_pmem() was only called by arch_has_pmem_api(). Both arch_has_wmb_pmem() and arch_has_pmem_api() checked to make sure that CONFIG_ARCH_HAS_PMEM_API was enabled. Instead, remove the old arch_has_wmb_pmem() wrapper to be rid of one extra layer of indirection and the redundant CONFIG_ARCH_HAS_PMEM_API check. Rename __arch_has_wmb_pmem() to arch_has_wmb_pmem() since we no longer have a wrapper, and just have arch_has_pmem_api() call the architecture specific arch_has_wmb_pmem() directly. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-20pmem, x86: move x86 PMEM API to new pmem.h headerRoss Zwisler
Move the x86 PMEM API implementation out of asm/cacheflush.h and into its own header asm/pmem.h. This will allow members of the PMEM API to be more easily identified on this and other architectures. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>