Age | Commit message (Collapse) | Author |
|
We've witnessed a few TLB events causing the machine to power off because
of prom_halt. In one case it was some nfs related area during rmmod. Another
was an mmapper of /dev/mem. A more recent one is an ITLB issue with
a bad pagesize which could be a hardware bug. Bugs happen but we should
attempt to not power off the machine and/or hang it when possible.
This is a DTLB error from an mmapper of /dev/mem:
[root@sparcie ~]# SUN4V-DTLB: Error at TPC[fffff80100903e6c], tl 1
SUN4V-DTLB: TPC<0xfffff80100903e6c>
SUN4V-DTLB: O7[fffff801081979d0]
SUN4V-DTLB: O7<0xfffff801081979d0>
SUN4V-DTLB: vaddr[fffff80100000000] ctx[1250] pte[98000000000f0610] error[2]
.
This is recent mainline for ITLB:
[ 3708.179864] SUN4V-ITLB: TPC<0xfffffc010071cefc>
[ 3708.188866] SUN4V-ITLB: O7[fffffc010071cee8]
[ 3708.197377] SUN4V-ITLB: O7<0xfffffc010071cee8>
[ 3708.206539] SUN4V-ITLB: vaddr[e0003] ctx[1a3c] pte[2900000dcc800eeb] error[4]
.
Normally sun4v_itlb_error_report() and sun4v_dtlb_error_report() would call
prom_halt() and drop us to OF command prompt "ok". This isn't the case for
LDOMs and the machine powers off.
For the HV reported error of HV_ENORADDR for HV HV_MMU_MAP_ADDR_TRAP we cause
a SIGBUS error by qualifying it within do_sparc64_fault() for fault code mask
of FAULT_CODE_BAD_RA. This is done when trap level (%tl) is less or equal
one("1"). Otherwise, for %tl > 1, we proceed eventually to die_if_kernel().
The logic of this patch was partially inspired by David Miller's feedback.
Power off of large sparc64 machines is painful. Plus die_if_kernel provides
more context. A reset sequence isn't a brief period on large sparc64 but
better than power-off/power-on sequence.
Cc: sparclinux@vger.kernel.org
Signed-off-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The impetus for this is that we would like to move to 64-bit PMDs and
PGDs, but that would result in only supporting a 42-bit address space
with the current page table layout. It'd be nice to support at least
43-bits.
The reason we'd end up with only 42-bits after making PMDs and PGDs
64-bit is that we only use half-page sized PTE tables in order to make
PMDs line up to 4MB, the hardware huge page size we use.
So what we do here is we make huge pages 8MB, and fabricate them using
4MB hw TLB entries.
Facilitate this by providing a "REAL_HPAGE_SHIFT" which is used in
places that really need to operate on hardware 4MB pages.
Use full pages (512 entries) for PTE tables, and adjust PMD_SHIFT,
PGD_SHIFT, and the build time CPP test as needed. Use a CPP test to
make sure REAL_HPAGE_SHIFT and the _PAGE_SZHUGE_* we use match up.
This makes the pgtable cache completely unused, so remove the code
managing it and the state used in mm_context_t. Now we have less
spinlocks taken in the page table allocation path.
The technique we use to fabricate the 8MB pages is to transfer bit 22
from the missing virtual address into the PTEs physical address field.
That takes care of the transparent huge pages case.
For hugetlb, we fill things in at the PTE level and that code already
puts the sub huge page physical bits into the PTEs, based upon the
offset, so there is nothing special we need to do. It all just works
out.
So, a small amount of complexity in the THP case, but this code is
about to get much simpler when we move the 64-bit PMDs as we can move
away from the fancy 32-bit huge PMD encoding and just put a real PTE
value in there.
With bug fixes and help from Bob Picco.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This is relatively easy since PMD's now cover exactly 4MB of memory.
Our PMD entries are 32-bits each, so we use a special encoding. The
lowest bit, PMD_ISHUGE, determines the interpretation. This is possible
because sparc64's page tables are purely software entities so we can use
whatever encoding scheme we want. We just have to make the TLB miss
assembler page table walkers aware of the layout.
set_pmd_at() works much like set_pte_at() but it has to operate in two
page from a table of non-huge PTEs, so we have to queue up TLB flushes
based upon what mappings are valid in the PTE table. In the second regime
we are going from huge-page to non-huge-page, and in that case we need
only queue up a single TLB flush to push out the huge page mapping.
We still have 5 bits remaining in the huge PMD encoding so we can very
likely support any new pieces of THP state tracking that might get added
in the future.
With lots of help from Johannes Weiner.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
o Move all files from sparc64/kernel/ to sparc/kernel
- rename as appropriate
o Update sparc/Makefile to the changes
o Update sparc/kernel/Makefile to include the sparc64 files
NOTE: This commit changes link order on sparc64!
Link order had to change for either of sparc32 and sparc64.
And assuming sparc64 see more testing than sparc32 change link
order on sparc64 where issues will be caught faster.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|